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Abstract. We propose and test a new method for generating canonical sequences for analysis
by the coherent anomaly method (CAM) from non-mean-field approximations. By intentionally
underestimating the rate of convergence of exact-diagonalization values for the mass or energy
gaps of finite systems, we form families of sequences of gap estimates. The gap estimates
cross zero with generically nonzero linear terms in their Taylor expansions, so thatν = 1 for
each member of these sequences of estimates. Thus, the CAM can be used to determineν.
Our freedom in deciding exactly how to underestimate the convergence allows us to choose the
sequence that displays the clearest coherent anomaly. We demonstrate this approach on the two-
dimensional ferromagnetic Ising model, for whichν = 1. We also use it on the three-dimensional
ferromagnetic Ising model, findingν ≈ 0.629, in good agreement with other estimates. Finally,
we apply it to an antiferromagnetic spin-1 Heisenberg chain, findingν ≈ 0.987 at the phase
transition between the Haldane phase and the dimerized phase, in agreement with the field-
theoretic predictionν = 1. Although the specific systems used to test the extrapolation-CAM
procedure involve finite system sizes, the method could be applied to other finite approximations,
such as systematic variational approximations.

1. Introduction

On approaching a critical point, some quantity diverges in the thermodynamic limit
with a characteristic critical exponent. The coherent anomaly method (CAM) has
proven quite successful in determining critical exponents from certain sequences of
approximations [1, 2, 3]. The CAM requires a systematic, orcanonical, sequence of
approximations, all of which yield identical, known critical exponents. The prototypical
example is a sequence of mean-field approximations in which successively larger clusters
allow more and more fluctuations to be properly taken into account [4]; all of the critical
exponents in this example assume their ‘classical’ values. The CAM uses the known
critical exponents of the approximate systems and the behaviour of the criticalamplitudes
as the quality of approximation is improved to determine the true critical exponents of the
original system being approximated. The purpose of this paper is to show how sequences
of approximations in which the critical points are ill defined and divergences do not occur
can be used to construct canonical sequences through extrapolation.
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The basic idea is as follows. Suppose that in the thermodynamic limit a nonnegative
quantityξ(β) diverges as a system parameterβ approaches a critical valueβ∗c as

ξ(β) ∼ (β∗c − β)−ν (1)

whereν is a critical exponent of unknown value. The reciprocal ofξ(β) then converges to
zero as

1(β) ≡ [ξ(β)]−1 ∼ (β∗c − β)ν. (2)

Suppose further that we have a sequence of monotonically decreasing approximations{δi(β)}
such that

δi(β) > δi+1(β) > δ∞(β) ≡ 1(β) ∀(i, β). (3)

By taking two or more consecutive values ofδi(β), we make an extrapolation1{i}(β) which
intentionally underestimatesthe rate of convergence in{δi(β)}. Clearly, these extrapolations
will be negative atβ∗c , and they generically cross zero as

1{i}(β) '
(
− d1{i}

dβ

∣∣∣∣
β=β{i},c

)
(β{i},c− β) (4)

for some{β{i},c}. For any reasonable extrapolation procedure (e.g. power-law extrapolation
or exponential extrapolation), lim{i}→∞1{i}(β) = 1(β). The CAM hypothesis, which can
be justified on the basis of an envelope argument [4], is that

− d1{i}
dβ

∣∣∣∣
β=β{i},c

∼ (β∗c − β{i},c)ν−1 (5)

so that, in analogy with (2),

1{i}(β) ∼ (β∗c − β{i},c)ν−1(β{i},c− β). (6)

This provides us with a convenient means of measuringν. According to (5), a plot of

Y{i} ≡ ln

(
−β{i},c d1{i}

dβ

∣∣∣∣
β=β{i},c

)
(7)

versus

X{i} ≡ ln

(
1− β{i},c

β∗c

)
(8)

should (in the limitX → −∞) be a straight line with slopeν − 1. Furthermore, since all
that is required of the extrapolation is that it must underestimate the convergence, we are
free to choose an extrapolation which leads to a particularly clear coherent anomaly.

The organization of the remainder of this paper is as follows. In section 2 we take as
1(β) the mass gap, i.e. the reciprocal of the correlation length, as a function of inverse
temperature in the square-lattice Ising ferromagnet. This model has the advantage that
the correlation length is known analytically [5]. In section 3 we analytically study the
asymptotic behaviour of the estimated critical exponent ifδi is given by a finite-size scaling
function. In section 4 we study the critical behaviour of the mass gap in the cubic-lattice
Ising ferromagnet, and demonstrate that the method works even whenν 6= 1. In section 5
we study the critical behaviour of the energy gap in an antiferromagnetic spin-1 Heisenberg
chain with bilinear and biquadratic interactions at the phase transition between the Haldane
and dimerized phases. In section 6 we summarize and discuss possible extensions of this
work.

Note that although all of the initial approximationsδi used in this study come from
systems that are finite in at least one dimension, this is only to provide convenient examples.
The method itself does not restrict us to such systems.



Extrapolation-CAM theory 6301

2. The square-lattice Ising ferromagnet

As the first example, we use the extrapolation-CAM method to determineν for the classical
Ising ferromagnet with Hamiltonian

H = −
∑
〈i,j〉

sisj (9)

wheresi = ±1. The sum
∑
〈i,j〉 runs over all nearest-neighbour pairs on a periodic square

lattice which is of lengthL in the y-direction and of infinite length in thex-direction. The
unit of length is the lattice constant.

This model has some very advantageous properties: the mass gaps{δL(β)} can be
calculated analytically for systems of arbitrary finite widthL, and the mass gap1(β) for
the thermodynamic limit of the model can also be calculated analytically [5]. Consequently,
we can make a detailed comparison of the extrapolation-CAM estimates for the critical
exponentν with its rigourously known value,ν = 1.

For this model the variableβ is the reciprocal of the dimensionless temperature. Since
it is known thatδL ∼ L−1 for sufficiently large systems at the critical point [6, 7, 8], we
extrapolate by solving

δL(β) = 1L,L′(β)+ A(β)L−B
δL′(β) = 1L,L′(β)+ A(β)L′−B

(10)

for 1L,L′(β) at fixedβ for B 6 1. The result of such an extrapolation is shown in figure 1.
Figure 2 showsY versusX, defined by (7) and (8), to be a curve with a small slope.

The slope tends to zero as−X becomes large—that is, whenβL,L′,c becomes a very good
approximation toβ∗c . We can estimateν from the slope of the line connecting two adjacent
points(X1, Y1) and(X2, Y2). This estimate will depend not only on the quality of the initial
approximationsδL(β), but also on the parameterB. We can constrainB by taking a third

0.75 0.80 0.85 0.90 0.95 1.00 1.05 1.10
0.0
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0.5 δL

∆L1,L2

β/βc*

∆

Figure 1. The mass gap, or inverse correlation length, for the square-lattice Ising ferromagnet.
The broken curves are the gaps for semi-infinite systems of width 4, 9, 16, and 25, from top to
bottom. The full curves are extrapolations using (10) with the value ofB determined in figure 3;
from left to right, they represent(L1, L2) = (4,9), (9,16), and (16,25).
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Figure 2. CAM plot for the square-lattice Ising model. Equations (8) and (7) defineX andY .
Extrapolations use the value ofB determined in figure 3 and system sizes that are consecutive
perfect squares:L ∈ {4, 9, 16, . . . ,400}. Note the difference in the scales.

�–0.010 0.000 0.010 0.020 0.030
0.980

0.990

1.000

1.010

ν 9,
16

,2
5

ν4,9,16−ν9,16,25

Figure 3. By varying B, ν can be estimated from consecutive extrapolations. In order to
determine a good estimate ofν, we varyB until two consecutive estimates ofν are identical.
This yieldsB = 0.407 andν ≈ 0.987.

point (X3, Y3) and demanding that the three points be colinear, so that the value ofν{L} will
be unambiguous. Figure 3 shows this for values ofν based on systems withL = 4, 9, 16,
and 25. The resulting estimate isν{L} = 0.987 406, in good agreement with the exact value
ν = 1. As may be expected, increasing the sizes of the four systems needed to form the
estimate ofν increases the accuracy ofν{L}. Figure 4 shows the estimated value ofν versus
B for L = j2, (j + 1)2, (j + 2)2, and(j + 3)2, wherej ∈ {2, 3, 4, . . . ,20}. The estimate
for j = 20 is ν{L} = 1.000 004. Further increase ofj actually causes the accuracy of the
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0.4 0.6 0.8
0.985

0.990

0.995

1.000

ν {L
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Figure 4. Using consecutive perfect squares, i.e.Lj = (k + j − 1)2, j ∈ {1, 2, 3, 4} and
k ∈ {1, 2, 3, . . .}, we determineν andB as in figure 3. As the system sizes become large, it
appears thatν{L} → 1 andB → 1. For some other sequences{Lj }, the convergence is much
less clear.

estimate to become worse due to the increasingly large sums required to calculateδL(β) and
dδL/dβ and the finite (eight-byte) numerical precision of our programs. The convergence
of ν{L} depends on how the four system sizes are chosen, and can be both complicated and
nonmonotonic.

3. Relation to finite-size scaling

Some insight into the dependence ofν{L} on the system sizes can be gained by assuming
that δL satisfies the scaling equation [8]

δL(β) = LωQ(x, y) (11)

where

x ≡
(

1− β

β∗c

)
Lθ (12)

and

y ≡ ζLφ. (13)

This assumption is well justified for the systems actually analysed in this paper, since they
all are finite in at least one dimension. In order to be consistent with (2), we must have
ω/θ = −ν, andθ = yT [8]. The variableζ is the correction-to-scaling amplitude andφ is
the correction-to-scaling exponent, where the correction to scaling is assumed to arise from
the leading irrelevant field [9].

For largeL′ = L+ 1, (10) yields

1L,L′(β) = δL(β)− δL(β)− δL
′(β)

L−B − L′−B L−B

= B−1Lω
[
(B + ω)Q(x, y)+ θx ∂Q

∂x
(x, y)+ φy ∂Q

∂y
(x, y)+O(L−1)

]
. (14)
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For the remainder of this section, we considerL to be a single continuous variable and drop
the second indexL′. The O(L−1) term in (14) comes from the truncation error in a difference
formula approximation of a derivative. This term cannot be neglected ifφ 6 −1, unless
we generalize the extrapolation procedure to allow for a sufficiently high-order difference
formula [10]; for the remainder of this section we assume that this is done if necessary and
neglect the truncation error.

For the moment, we setζ = 0 and perform the extrapolation-CAM procedure in the
absence of corrections to scaling.

It is convenient at this point to use a slightly different definition forY ,

Y ≡ ln

(
−β∗c

d1L

dβ

∣∣∣∣
L

)
. (15)

Using (14), we find

Y = ln

[
x

(
1− β

β∗c

)−1 d1L

dx

∣∣∣∣
L

]

=
(

1+ ω
θ

)
[ln x −X] − lnB + ln

∂F

∂x
(x, B). (16)

We findβL,c from the condition1L(βL,c) = 0, which implies

F(x, B) ≡ (B + ω)Q(x, 0)+ θx ∂Q
∂x
(x, 0) = 0. (17)

The estimate forν is given by calculating dY/dX while holding bothF(x, B) and B
constant, which is accomplished by holdingx constant:

νL = 1+ dY

dX

∣∣∣∣
x

= −ω
θ
≡ ν. (18)

Finally, the ‘local straightness’ constraint

d2Y

dX2

∣∣∣∣
x

= 0 (19)

is simply the identity 0= 0. Thus without corrections to scaling, theνL = ν but x andB
are undetermined. Note, however, that ifx = 0, B = −ω > 0.

In order to study the effects of corrections to scaling, we could expand (14) and the left-
hand side of (19) (which is proportional toζ ) in x, y, andε ≡ B+ω; then the requirements
1L(βL,c) = 0 and d2Y/dX2 = 0 yield a pair of equations of the form

M11x +M12ε = v1y

M21x +M22ε = v2y
(20)

whereM andv are constants. The solution of (20),

x

ε
= M−1vy (21)

shows that bothx andε are proportional toy. In the same way, we can expand the left-hand
side of (18) in terms ofx, y, andε. The result then is that

B ' −ω +O(Lφ) (22)

and

νL ' ν +O(Lφ). (23)
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Privman and Fisher have shown that the asymptotic convergence for finite-size scaling
renormalization techniques is also of the form (22) [11]; their discussion of the difficulties
in actually observing this asymptotic behaviour should be relevant in the present case as
well. For the two-dimensional Ising model,ω = −1, so we should expect limL→∞ B = 1,
as indeed seems plausible from figure 4.

4. The cubic-lattice Ising ferromagnet

In three dimensions, the Ising model defined by (9) has not been solved analytically,
but it has been the subject of a large amount of numerical study. We use a Monte
Carlo renormalization group estimate for the critical point of the cubic-lattice Ising model,
β∗c = 0.221 652(4) [12]. Recent estimates ofν includeν = 0.642(2) [12], ν ≈ 0.631 [13],
andν ≈ 0.646 [14].

As a result of some earlier studies [15, 16], we have transfer-matrix results already
available for cubic-lattice Ising ferromagnets with periodic boundary conditions and square
L×L cross-sections, whereL ∈ {2, 3, 4, 5}. These system sizes are obviously quite small,
and are not really competitive with some current methods, such as the transfer-matrix Monte
Carlo method [17].

The method here is basically the same as in the previous section, although we are much
more restricted both in the system sizes available and, forL = 5, the number of data
available. Since references [15, 16] dealt with phenomena forβ > β∗c , we have only a few
pointsδ5(β) with β < β∗c (see figure 5). We use cubic splines to evaluate bothδL(β) and the
first dδL/dβ as continuous functions. Except at the low-β end of theL = 5 data, we always
use ‘natural’ boundary conditions on our cubic splines, i.e. specifying that d2δL/dβ2 = 0
at the end points of our data. For the low-β end of theδ5 spline, we use both natural
boundary conditions and ‘clamped’ boundary conditions by extrapolating dδ5/dβ from the
smaller system sizes. There is little difference inδ5 itself for these two splines.

We extrapolate1L,L′ using (10) and use (5), (7), and (8) to estimateν. As figure 6
shows, the splines yield unreliable estimates near the end of theδ5 data. However, as long
asβ{4,5},c is reasonably large, the estimates ofν do not depend on the boundary conditions
used for the spline and seem more reliable. Choosing five such points and using Aitken’s
12 method [18]† to accelerate the convergence, we extrapolate to [ν2,3,4 − ν3,4,5]−1→∞,
yielding ν = 0.629. Given the very small systems used in this estimate, this is in good
agreement with other recent estimates ofν.

5. The spin-1 antiferromagnetic Heisenberg chain

The Heisenberg chain we study is defined by the quantum Hamiltonian

H =
L∑
i=1

[Si · Si+1− β(Si · Si+1)
2] (24)

whereSi is the quantum spin-1 operator for the spin at sitei andSL+1 ≡ S1 (periodic
boundary conditions). In the limitL → ∞, the spectrum of this Hamiltonian has been
exactly solved for atβ = 1 using Bethe-ansatz techniques, and the resulting energy spectrum
is gapless [19, 20, 21]. The ground state of the Hamiltonian has also been found [25, 26]
for even values ofL at β = − 1

3, and the gap above it has been proven to be nonvanishing.

† The symbol12 is a part of the name of the numerical method and should not be confused with either1(β) or
1{i}(β).
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Figure 5. The mass gap for the cubic-lattice Ising ferromagnet. The light full curves are clamped
splines to the transfer-matrix calculations (open circles) of gaps for semi-infinite systems of cross
sectionL = 2, 3, 4, and 5, from top to bottom. The heavy full curves are extrapolations using
(10); from left to right, they represent(L1, L2) = (2,3), (3,4), and (4,5).

�–0.08 �–0.06 �–0.04 �–0.02 0.00 0.02 0.04
0.60

0.65

0.70

0.75

0.80
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clamped
natural

ν2,3,4−ν3,4,5

ν 3,
4,

5

Figure 6. As in figure 3, we varyB to obtain a good estimate ofν. Results are shown using
two different cubic splines through the data forL = 5. These curves become meaningless asβc

approaches the end of the data available forL = 5. By taking five points (full circles) where
the two curves agree and extrapolating, we findν ≈ 0.6285 (open circle). This compares well
with other estimates, such as that of [12] (cross).

It has been argued [24] thatβ = 1 marks a phase transition between the gapped Haldane
phase [25, 26] and the gapped dimerized phase, and that this phase transition is in the
same universality class as the two-dimensional Ising model. These arguments have been
supported numerically [27, 28].
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Figure 7. Gap estimatesδL for the spin-1 Heisenberg chain with periodic boundary conditions.
Strong finite-size effects obscure the fact that the gap vanishes atβ = 1 in the limit L→∞.

Figure 7 shows the estimatesδL(β) obtained by exact diagonalization of small systems.
The finite-size effects are quite strong, and we were unable to make an extrapolation of the
form (10), since we require 06 β{L},c < 1 for all extrapolations in order forX andY to be
real and finite. Instead we solve

δL(β) = D(β)+ A(β)L−B(β)
δL′(β) = D(β)+ A(β)L′−B(β)
δL′′(β) = D(β)+ A(β)L′′−B(β)

(25)

for B(β) at fixedβ, and then solve

δL′(β) = 1L,L′,L′′(β)+ C(β)L′−ZB(β)
δL′′(β) = 1L,L′,L′′(β)+ C(β)L′′−ZB(β)

(26)

for 1L,L′,L′′(β) using the value ofB(β) found from (25). HereL < L′ < L′′. The
parameterZ allows us to tune the extrapolation as in the preceding sections. Figure 8
shows an example of extrapolations which in fact yield the best estimate ofν.

Even with the extrapolation procedure outlined above, we are not able to eliminate the
curvature from the CAM plot as we did in sections 2 and 4. Instead, we perform a fit to
the form

Y = a

X
+ b + (ν − 1)X (27)

while varyingZ to find ν, assigning an arbitrary fixed weight equally to all of the CAM
points. The best estimate forν is the one that minimizesχ2 [figure 9]. The best fit, shown
in figure 10, is forν ≈ 0.987, in good agreement with theoretical predictions.

6. Conclusion

In this paper we propose a new and very general method for constructing canonical
sequences for use in the CAM. A critical pointβ = β∗c is always marked by the vanishing
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Figure 8. Extrapolated gap estimates1{L} for the spin-1 Heisenberg chain with periodic
boundary conditions.
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Figure 9. We fit the CAM data to equation (27) while varyingZ in (26). The CAM data are
equally weighted with an arbitrary fixed weight. The minimum ofχ2 gives the best estimate
for ν.

of some quantity1(β), though approximations of1(β) often remain nonzero for all values
of β. By intentionally underestimating the rate of convergence of an initial sequence of
approximations{δi(β)}, we form extrapolations{1{i}(β)} that cross zero at some value of
β, which serves as the approximate critical point{β{i},c}. Furthermore,1{i}(β) can very
generally be expected to cross zero linearly withβ. Because there are many ways in which
the extrapolations can be made from an initial sequence{δi}, we have a great deal of freedom
to choose an extrapolation which shows a clear coherent anomaly.

We apply this method to the square lattice Ising model, using the exact values of the
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Figure 10. CAM plot for the spin-1 Heisenberg chain.Y andX are given by (7) and (8),
respectively. The solid curve is a fit to (27). The broken curve is the asymptote of the fitted
curve.

mass gaps for semi-infinite systems of finite widthN at temperatureT = β−1 as δL(β).
We find that the method yieldsνL ≈ 1 for moderate values ofL and that limL→∞ νL→ 1,
as should be expected from the exact solution of the two-dimensional Ising model [5]. The
convergence may be complicated and nonmonotonic, however, depending on which sets of
L are chosen to form the extrapolations.

In order to investigate the convergence ofνL to ν further, we assume thatδL follows
the scaling equation (11). This allows us to show thatνL ' ν +O(Lφ), which is the same
convergence rate as has been found for finite-size scaling [11].

We also apply this method to the cubic-lattice Ising model, using numerical transfer-
matrix values of the mass gaps for semi-infinite systems withL × L cross sections and
periodic boundary conditions. Even though we are limited to systems withL 6 5 and have
a limited amount of data forL = 5, we are able to estimateν ≈ 0.629, which is within a
few per cent of the best current estimates ofν [12, 13, 14].

Finally, we apply this method to a one-dimensional spin-1 quantum Heisenberg
antiferromagnet, using numerical exact-diagonalization estimates of the energy gaps for
systems of widthL and periodic boundary conditions. In spite of large finite-size effects,
we are able to estimateν ≈ 0.987, in good agreement with theoretical and numerical studies
indicatingν = 1 [24, 27, 28].

There are a few points that need to be emphasized.
• Although we use data from finite systems of successively larger size, we are not

performing finite-size scaling [8]. The initial sequence{δi} could be derived from other
techniques, such as the density-matrix renormalization group algorithm [29, 30], in which the
system size is not the most important parameter affecting the quality of the approximation.
• Although we use extrapolations, we are not seeking thebestextrapolations in the sense

of extrapolations which are nearest to the thermodynamic limit of the model in question.
This is because the extrapolation is just one step in the process. Instead, we seek a sequence
of extrapolations for which the coherent anomaly is clear.
• Taylor expansions have been used previously to form sequences of approximations
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with ν{i} = 1 from series expansions [31], but in those studies the linear behaviour of the
CAM plot could not be improved, since the physics of the series expansion left no room
for change. The extrapolation-CAM method has flexibility to choose the ‘straightest’ CAM
plot.
• This method requires good numerical precision. This is clear from figure 6. Care

should therefore be exercised when applying this method to Monte Carlo data, where
statistical uncertainty may be significant.
• Although we here are estimating onlyν, other critical exponents could be found in

the same way. For instance, instead of extrapolating the gap, one could extrapolate the
reciprocal of the specific heat.
• Some initial sequences{δi(β)} may already cross zero asβ is varied. For instance, the

variational method of references [32, 33] produces gap estimates for the spin-1 Heisenberg
chain that have this property. In such a case, extrapolations could still be used to look for
a clearer coherent anomaly. The extrapolations should then be faster than the convergence
of {δi(β)}, rather than slower, so that the sequence{1{i}} still crosses zero.
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